Sean P; Perim Collins, Eric; Daff
Idealized Carbon-Based Materials Exhibiting Record Deliverable Capacities for Vehicular Methane Storage Journal Article
In: The Journal of Physical Chemistry C, vol. 123, pp. 1050-1058, 2019.
@article{Collins2019,
title = {Idealized Carbon-Based Materials Exhibiting Record Deliverable Capacities for Vehicular Methane Storage},
author = {Collins, Sean P; Perim, Eric; Daff, Thomas D; Skaf, Munir S; Galvao, Douglas Soares; Woo, Tom K},
url = {https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.8b09447},
doi = {10.1021/acs.jpcc.8b09447},
year = {2019},
date = {2019-01-05},
journal = {The Journal of Physical Chemistry C},
volume = {123},
pages = {1050-1058},
abstract = {Materials for vehicular methane storage have been extensively studied, although no suitable material has been found. In this work, we use molecular simulation to investigate three types of carbon-based materials, Schwarzites, layered graphenes, and carbon nanoscrolls, for use in vehicular methane storage under adsorption conditions of 65 bar and 298 K and desorption conditions of 5.8 bar and 358 K. Ten different Schwarzites were tested and found to have high adsorption with maximums at 273 VSTP/V, but middling deliverable capacities of no more than 131 VSTP/V. Layered graphene and graphene nanoscrolls were found to have extremely high CH4 adsorption capacities of 355 and 339 VSTP/V, respectively, when the interlayer distance was optimized to 11 Å. The deliverable capacities of perfectly layered graphene and graphene nanoscrolls were also found to be exceptional with values of 266 and 252 VSTP/V, respectively, with optimized interlayer distances. These values make idealized graphene and nanoscrolls the record holders for adsorption and deliverable capacities under vehicular methane storage conditions.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Borges, Daiane Damasceno; Galvao, Douglas S.
Schwarzites for Natural Gas Storage: A Grand-Canonical Monte Carlo Study Journal Article
In: MRS Advances, vol. 3, no. 1-2, pp. 115-120, 2018.
@article{Borges2018d,
title = {Schwarzites for Natural Gas Storage: A Grand-Canonical Monte Carlo Study },
author = {Daiane Damasceno Borges and Douglas S. Galvao},
url = {https://www.cambridge.org/core/journals/mrs-advances/article/schwarzites-for-natural-gas-storage-a-grandcanonical-monte-carlo-study/2DF8D601AF8EF04BBAC5CCCBEFA8339E},
doi = {https://doi.org/10.1557/adv.2018.190},
year = {2018},
date = {2018-02-13},
journal = {MRS Advances},
volume = {3},
number = {1-2},
pages = {115-120},
abstract = {he 3D porous carbon-based structures called Schwarzites have been recently a subject of renewed interest due to the possibility of being synthesized in the near future. These structures exhibit negatively curvature topologies with tuneable porous sizes and shapes, which make them natural candidates for applications such as CO2 capture, gas storage and separation. Nevertheless, the adsorption properties of these materials have not been fully investigated. Following this motivation, we have carried out Grand-Canonical Monte Carlo simulations to study the adsorption of small molecules such as CO2, CO, CH4, N2 and H2, in a series of Schwarzites structures. Here, we present our preliminary results on natural gas adsorptive capacity in association with analyses of the guest-host interaction strengths. Our results show that Schwarzites P7par, P8bal and IWPg are the most promising structures with very high CO2 and CH4 adsorption capacity and low saturation pressure (<1bar) at ambient temperature. The P688 is interesting for H2 storage due to its exceptional high H2 adsorption enthalpy value of -19kJ/mol.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Leonardo D. Machado Cristiano F. Woellner, Pedro A. S. Autreto
The Influence of Morphology on the Charge Transport in Two-Phase Disordered Organic Systems Online
2015, (ArXiv draft of MRS Proceedings, 1737, mrsf14-1737-u18-21 (2015)).
@online{Woellner2015,
title = {The Influence of Morphology on the Charge Transport in Two-Phase Disordered Organic Systems},
author = {Cristiano F. Woellner, Leonardo D. Machado, Pedro A. S. Autreto, Jose A. Freire, Douglas S. Galvao},
url = {http://arxiv.org/abs/1501.01343},
year = {2015},
date = {2015-01-01},
booktitle = {MRS Proceedings},
volume = {1737},
pages = {mrsf14-1737-u18-21},
abstract = {In this work we use a three-dimensional Pauli master equation to investigate the charge carrier mobility of a two-phase system, which can mimic donor-acceptor and amorphous- crystalline bulk heterojunctions. Our approach can be separated into two parts: the morphology generation and the charge transport modeling in the generated blend. The morphology part is based on a Monte Carlo simulation of binary mixtures (donor/acceptor). The second part is carried out by numerically solving the steady-state Pauli master equation. By taking the energetic disorder of each phase, their energy offset and domain morphology into consideration, we show that the carrier mobility can have a significant different behavior when compared to a one-phase system. When the energy offset is non-zero, we show that the mobility electric field dependence switches from negative to positive at a threshold field proportional to the energy offset. Additionally, the influence of morphology, through the domain size and the interfacial roughness parameters, on the transport was also investigated.},
note = {ArXiv draft of MRS Proceedings, 1737, mrsf14-1737-u18-21 (2015)},
keywords = {},
pubstate = {published},
tppubtype = {online}
}
Leonardo D Machado Cristiano F Woellner, Pedro AS Autreto
The Influence of Morphology on the Charge Transport in Two-Phase Disordered Organic Systems Proceedings
vol. 1737, no. mrsf14-1737-u18-21, 2015, (MRS Proceedings, 1737, mrsf14-1737-u18-21).
@proceedings{Woellner2015b,
title = {The Influence of Morphology on the Charge Transport in Two-Phase Disordered Organic Systems},
author = {Cristiano F Woellner, Leonardo D Machado, Pedro AS Autreto, José A Freire, Douglas S Galvão},
url = {http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=9707375&fileId=S1946427415005023},
doi = {10.1557/opl.2015.502},
year = {2015},
date = {2015-01-01},
booktitle = {MRS Proceedings},
volume = {1737},
number = {mrsf14-1737-u18-21},
pages = {mrsf14-1737-u18-21},
abstract = {In this work we use a three-dimensional Pauli master equation to investigate the charge carrier mobility of a two-phase system, which can mimic donor-acceptor and amorphous-crystalline bulk heterojunctions. Our approach can be separated into two parts: the morphology generation and the charge transport modeling in the generated blend. The morphology part is based on a Monte Carlo simulation of binary mixtures (donor/acceptor). The second part is carried out by numerically solving the steady-state Pauli master equation. By taking the energetic disorder of each phase, their energy offset and domain morphology into consideration, we show that the carrier mobility can have a significant different behavior when compared to a one-phase system. When the energy offset is non-zero, we show that the mobility electric field dependence switches from negative to positive at a threshold field proportional to the energy offset. Additionally, the influence of morphology, through the domain size and the interfacial roughness parameters, on the transport was also investigated.
},
note = {MRS Proceedings, 1737, mrsf14-1737-u18-21},
keywords = {},
pubstate = {published},
tppubtype = {proceedings}
}
Coluci, VR; Braga, SF; Baughman, RH; Galvao, DS
Prediction of the hydrogen storage capacity of carbon nanoscrolls Journal Article
In: Physical Review B, vol. 75, no. 12, pp. 125404, 2007.
@article{coluci2007prediction,
title = {Prediction of the hydrogen storage capacity of carbon nanoscrolls},
author = {Coluci, VR and Braga, SF and Baughman, RH and Galvao, DS},
url = {http://journals.aps.org/prb/abstract/10.1103/PhysRevB.75.125404},
year = {2007},
date = {2007-01-01},
journal = {Physical Review B},
volume = {75},
number = {12},
pages = {125404},
publisher = {APS},
abstract = {Classical grand-canonical Monte Carlo simulations were performed to investigate the equilibrium hydrogen storage capacity of carbon nanoscrolls. The results show that hydrogen molecules can be absorbed in the internal cavity as well as on the external surface of the scroll when the interlayer spacing is less than 4.4Å. When the interlayer spacing is increased to 6.4Å, by assuming spacing increase due to intercalation of other species, the hydrogen molecules can also be incorporated in the interlayer galleries, doubling the gravimetric storage capacity and reaching 5.5wt% hydrogen per weight carbon at 150K and 1MPa. Our results showed that intercalated carbon nanoscrolls may be a promissing material for hydrogen storage.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Coluci, Vitor; Braga, Scheila F; Baughman, Ray H; Galvao, Douglas S
Hydrogen Storage in Carbon Nanoscrolls: A Molecular Dynamics Study Proceedings
Cambridge University Press, vol. 885, 2005.
@proceedings{coluci2005hydrogen,
title = {Hydrogen Storage in Carbon Nanoscrolls: A Molecular Dynamics Study},
author = {Coluci, Vitor and Braga, Scheila F and Baughman, Ray H and Galvao, Douglas S},
url = {http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8012272&fileId=S1946427400039816},
year = {2005},
date = {2005-01-01},
journal = {MRS Proceedings},
volume = {885},
pages = {0885--A06},
publisher = {Cambridge University Press},
abstract = {We carried out molecular dynamics simulations with Tersoff-Brenner potentials in order to investigate the hydrogen uptake mechanisms and storage capacity of carbon nanoscrolls (CNSs). CNSs are jelly roll-like structures formed by wrapping graphene layers. Interlayer adsorption is an option for this material, which does not exist for single and multiwalled carbon nanotubes. We analyzed the processes of hydrogen physisorption and uptake mechanisms. We observed incorporation of hydrogen molecules in both external and internal scroll surfaces. Insertion in the internal cavity and between the scroll layers is responsible for 40% of the total hydrogen adsorption at 77 K.},
keywords = {},
pubstate = {published},
tppubtype = {proceedings}
}
2019

Sean P; Perim Collins, Eric; Daff
Idealized Carbon-Based Materials Exhibiting Record Deliverable Capacities for Vehicular Methane Storage Journal Article
In: The Journal of Physical Chemistry C, vol. 123, pp. 1050-1058, 2019.
Abstract | Links | BibTeX | Tags: Gas Storage, Molecular Dynamics, Monte Carlo, Schwarzites, Scrolls
@article{Collins2019,
title = {Idealized Carbon-Based Materials Exhibiting Record Deliverable Capacities for Vehicular Methane Storage},
author = {Collins, Sean P; Perim, Eric; Daff, Thomas D; Skaf, Munir S; Galvao, Douglas Soares; Woo, Tom K},
url = {https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.8b09447},
doi = {10.1021/acs.jpcc.8b09447},
year = {2019},
date = {2019-01-05},
journal = {The Journal of Physical Chemistry C},
volume = {123},
pages = {1050-1058},
abstract = {Materials for vehicular methane storage have been extensively studied, although no suitable material has been found. In this work, we use molecular simulation to investigate three types of carbon-based materials, Schwarzites, layered graphenes, and carbon nanoscrolls, for use in vehicular methane storage under adsorption conditions of 65 bar and 298 K and desorption conditions of 5.8 bar and 358 K. Ten different Schwarzites were tested and found to have high adsorption with maximums at 273 VSTP/V, but middling deliverable capacities of no more than 131 VSTP/V. Layered graphene and graphene nanoscrolls were found to have extremely high CH4 adsorption capacities of 355 and 339 VSTP/V, respectively, when the interlayer distance was optimized to 11 Å. The deliverable capacities of perfectly layered graphene and graphene nanoscrolls were also found to be exceptional with values of 266 and 252 VSTP/V, respectively, with optimized interlayer distances. These values make idealized graphene and nanoscrolls the record holders for adsorption and deliverable capacities under vehicular methane storage conditions.},
keywords = {Gas Storage, Molecular Dynamics, Monte Carlo, Schwarzites, Scrolls},
pubstate = {published},
tppubtype = {article}
}
2018

Borges, Daiane Damasceno; Galvao, Douglas S.
Schwarzites for Natural Gas Storage: A Grand-Canonical Monte Carlo Study Journal Article
In: MRS Advances, vol. 3, no. 1-2, pp. 115-120, 2018.
Abstract | Links | BibTeX | Tags: Gas Storage, Mechanical Properties, Molecular Dynamics, Monte Carlo, Schwarzites
@article{Borges2018d,
title = {Schwarzites for Natural Gas Storage: A Grand-Canonical Monte Carlo Study },
author = {Daiane Damasceno Borges and Douglas S. Galvao},
url = {https://www.cambridge.org/core/journals/mrs-advances/article/schwarzites-for-natural-gas-storage-a-grandcanonical-monte-carlo-study/2DF8D601AF8EF04BBAC5CCCBEFA8339E},
doi = {https://doi.org/10.1557/adv.2018.190},
year = {2018},
date = {2018-02-13},
journal = {MRS Advances},
volume = {3},
number = {1-2},
pages = {115-120},
abstract = {he 3D porous carbon-based structures called Schwarzites have been recently a subject of renewed interest due to the possibility of being synthesized in the near future. These structures exhibit negatively curvature topologies with tuneable porous sizes and shapes, which make them natural candidates for applications such as CO2 capture, gas storage and separation. Nevertheless, the adsorption properties of these materials have not been fully investigated. Following this motivation, we have carried out Grand-Canonical Monte Carlo simulations to study the adsorption of small molecules such as CO2, CO, CH4, N2 and H2, in a series of Schwarzites structures. Here, we present our preliminary results on natural gas adsorptive capacity in association with analyses of the guest-host interaction strengths. Our results show that Schwarzites P7par, P8bal and IWPg are the most promising structures with very high CO2 and CH4 adsorption capacity and low saturation pressure (<1bar) at ambient temperature. The P688 is interesting for H2 storage due to its exceptional high H2 adsorption enthalpy value of -19kJ/mol.},
keywords = {Gas Storage, Mechanical Properties, Molecular Dynamics, Monte Carlo, Schwarzites},
pubstate = {published},
tppubtype = {article}
}
2015

Leonardo D. Machado Cristiano F. Woellner, Pedro A. S. Autreto
The Influence of Morphology on the Charge Transport in Two-Phase Disordered Organic Systems Online
2015, (ArXiv draft of MRS Proceedings, 1737, mrsf14-1737-u18-21 (2015)).
Abstract | Links | BibTeX | Tags: Conducting Polymers, Monte Carlo, Transport
@online{Woellner2015,
title = {The Influence of Morphology on the Charge Transport in Two-Phase Disordered Organic Systems},
author = {Cristiano F. Woellner, Leonardo D. Machado, Pedro A. S. Autreto, Jose A. Freire, Douglas S. Galvao},
url = {http://arxiv.org/abs/1501.01343},
year = {2015},
date = {2015-01-01},
booktitle = {MRS Proceedings},
volume = {1737},
pages = {mrsf14-1737-u18-21},
abstract = {In this work we use a three-dimensional Pauli master equation to investigate the charge carrier mobility of a two-phase system, which can mimic donor-acceptor and amorphous- crystalline bulk heterojunctions. Our approach can be separated into two parts: the morphology generation and the charge transport modeling in the generated blend. The morphology part is based on a Monte Carlo simulation of binary mixtures (donor/acceptor). The second part is carried out by numerically solving the steady-state Pauli master equation. By taking the energetic disorder of each phase, their energy offset and domain morphology into consideration, we show that the carrier mobility can have a significant different behavior when compared to a one-phase system. When the energy offset is non-zero, we show that the mobility electric field dependence switches from negative to positive at a threshold field proportional to the energy offset. Additionally, the influence of morphology, through the domain size and the interfacial roughness parameters, on the transport was also investigated.},
note = {ArXiv draft of MRS Proceedings, 1737, mrsf14-1737-u18-21 (2015)},
keywords = {Conducting Polymers, Monte Carlo, Transport},
pubstate = {published},
tppubtype = {online}
}

Leonardo D Machado Cristiano F Woellner, Pedro AS Autreto
The Influence of Morphology on the Charge Transport in Two-Phase Disordered Organic Systems Proceedings
vol. 1737, no. mrsf14-1737-u18-21, 2015, (MRS Proceedings, 1737, mrsf14-1737-u18-21).
Abstract | Links | BibTeX | Tags: Conducting Polymers, Monte Carlo, Solar Cells
@proceedings{Woellner2015b,
title = {The Influence of Morphology on the Charge Transport in Two-Phase Disordered Organic Systems},
author = {Cristiano F Woellner, Leonardo D Machado, Pedro AS Autreto, José A Freire, Douglas S Galvão},
url = {http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=9707375&fileId=S1946427415005023},
doi = {10.1557/opl.2015.502},
year = {2015},
date = {2015-01-01},
booktitle = {MRS Proceedings},
volume = {1737},
number = {mrsf14-1737-u18-21},
pages = {mrsf14-1737-u18-21},
abstract = {In this work we use a three-dimensional Pauli master equation to investigate the charge carrier mobility of a two-phase system, which can mimic donor-acceptor and amorphous-crystalline bulk heterojunctions. Our approach can be separated into two parts: the morphology generation and the charge transport modeling in the generated blend. The morphology part is based on a Monte Carlo simulation of binary mixtures (donor/acceptor). The second part is carried out by numerically solving the steady-state Pauli master equation. By taking the energetic disorder of each phase, their energy offset and domain morphology into consideration, we show that the carrier mobility can have a significant different behavior when compared to a one-phase system. When the energy offset is non-zero, we show that the mobility electric field dependence switches from negative to positive at a threshold field proportional to the energy offset. Additionally, the influence of morphology, through the domain size and the interfacial roughness parameters, on the transport was also investigated.
},
note = {MRS Proceedings, 1737, mrsf14-1737-u18-21},
keywords = {Conducting Polymers, Monte Carlo, Solar Cells},
pubstate = {published},
tppubtype = {proceedings}
}
2007

Coluci, VR; Braga, SF; Baughman, RH; Galvao, DS
Prediction of the hydrogen storage capacity of carbon nanoscrolls Journal Article
In: Physical Review B, vol. 75, no. 12, pp. 125404, 2007.
Abstract | Links | BibTeX | Tags: Hydrogen Storage, Molecular Dynamics, Monte Carlo, Scrolls
@article{coluci2007prediction,
title = {Prediction of the hydrogen storage capacity of carbon nanoscrolls},
author = {Coluci, VR and Braga, SF and Baughman, RH and Galvao, DS},
url = {http://journals.aps.org/prb/abstract/10.1103/PhysRevB.75.125404},
year = {2007},
date = {2007-01-01},
journal = {Physical Review B},
volume = {75},
number = {12},
pages = {125404},
publisher = {APS},
abstract = {Classical grand-canonical Monte Carlo simulations were performed to investigate the equilibrium hydrogen storage capacity of carbon nanoscrolls. The results show that hydrogen molecules can be absorbed in the internal cavity as well as on the external surface of the scroll when the interlayer spacing is less than 4.4Å. When the interlayer spacing is increased to 6.4Å, by assuming spacing increase due to intercalation of other species, the hydrogen molecules can also be incorporated in the interlayer galleries, doubling the gravimetric storage capacity and reaching 5.5wt% hydrogen per weight carbon at 150K and 1MPa. Our results showed that intercalated carbon nanoscrolls may be a promissing material for hydrogen storage.},
keywords = {Hydrogen Storage, Molecular Dynamics, Monte Carlo, Scrolls},
pubstate = {published},
tppubtype = {article}
}
2005

Coluci, Vitor; Braga, Scheila F; Baughman, Ray H; Galvao, Douglas S
Hydrogen Storage in Carbon Nanoscrolls: A Molecular Dynamics Study Proceedings
Cambridge University Press, vol. 885, 2005.
Abstract | Links | BibTeX | Tags: Hydrogen Storage, Molecular Dynamics, Monte Carlo, Scrolls
@proceedings{coluci2005hydrogen,
title = {Hydrogen Storage in Carbon Nanoscrolls: A Molecular Dynamics Study},
author = {Coluci, Vitor and Braga, Scheila F and Baughman, Ray H and Galvao, Douglas S},
url = {http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8012272&fileId=S1946427400039816},
year = {2005},
date = {2005-01-01},
journal = {MRS Proceedings},
volume = {885},
pages = {0885--A06},
publisher = {Cambridge University Press},
abstract = {We carried out molecular dynamics simulations with Tersoff-Brenner potentials in order to investigate the hydrogen uptake mechanisms and storage capacity of carbon nanoscrolls (CNSs). CNSs are jelly roll-like structures formed by wrapping graphene layers. Interlayer adsorption is an option for this material, which does not exist for single and multiwalled carbon nanotubes. We analyzed the processes of hydrogen physisorption and uptake mechanisms. We observed incorporation of hydrogen molecules in both external and internal scroll surfaces. Insertion in the internal cavity and between the scroll layers is responsible for 40% of the total hydrogen adsorption at 77 K.},
keywords = {Hydrogen Storage, Molecular Dynamics, Monte Carlo, Scrolls},
pubstate = {published},
tppubtype = {proceedings}
}
http://scholar.google.com/citations?hl=en&user=95SvbM8AAAAJ