Owuor, Peter Samora; Inthong, Suchittra; Sajadi, Seyed Mohammad; Intawin, Pratthana; Chipara, Alin C.; Woellner, Cristiano F.; Sayed, Farheen N.; Tsang, Harvey H.; Stender, Anthony; Vajtai, Robert; Pengpat, Kamonpan; Eitssayeam, Sukum; Galvao, Douglas S.; Lou, Jun; Tiwary, Chandra Sekhar; Ajayan, Pulickel M.
Elastic and ‘transparent bone’ as an electrochemical separator Journal Article
In: Materials Chemistry Today, vol. 12, pp. 132-138, 2019.
@article{Owuor2019,
title = {Elastic and ‘transparent bone’ as an electrochemical separator},
author = {Peter Samora Owuor and Suchittra Inthong and Seyed Mohammad Sajadi and Pratthana Intawin and Alin C. Chipara and Cristiano F. Woellner and Farheen N. Sayed and Harvey H. Tsang and Anthony Stender and Robert Vajtai and Kamonpan Pengpat and Sukum Eitssayeam and Douglas S. Galvao and Jun Lou and Chandra Sekhar Tiwary and Pulickel M. Ajayan},
url = {https://reader.elsevier.com/reader/sd/pii/S246851941830291X?token=B3C1F35B7DCEA8636EFB32B8D1D71EEC9852E58D0729A622DAFDF86C3EE65DF2A33E77CE7534A5D66D3854C396F69D1A},
doi = {10.1016/j.mtchem.2018.12.009},
year = {2019},
date = {2019-01-05},
journal = {Materials Chemistry Today},
volume = {12},
pages = {132-138},
abstract = {Organic matrix of bone mainly composed of collagen matrix serve as a crucial component for remarkable toughness and strength in bones. The porous collagen matrix can also serve as efficient template for various applications such as nanoparticles synthetic, catalysis or catalysis supports, electrochemical separator, filtration membrane and tissue engineering. However, fabricating collagen matrix from bones without degrading its morphological structure still remain a challenge. Here we present evidence of how ceramic crystals from a bone can be removed to fabricate a complete ‘transparent bone’ structure with improved porous and elasticity. We show that demineralization or selective etching using dilute acid (citric) can remove ceramics mineral nanoparticles without degrading the collagen matrix. The transparent bone collagen matrix is investigated as the separator in electrochemical supercapacitor with aqueous electrolyte where it shows better performance compared to conventional separators.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Ok-Kyung; Owuor Park, Peter; Morais Jaques
Novel Method to Fabricate Multi-Functional Boron Nitride-Iron-Carbon Nanotube Hybrid Materials for Fabrication of High- Performance Polyimide Composites (under review) Journal Article
In: 2019.
@article{Park2019,
title = {Novel Method to Fabricate Multi-Functional Boron Nitride-Iron-Carbon Nanotube Hybrid Materials for Fabrication of High- Performance Polyimide Composites (under review)},
author = {Park, Ok-Kyung; Owuor, Peter; Morais Jaques, Ygor; Lee, Joong Hee; Kim, Nam
Hoon; Galvao, Douglas; Lou, Jun; Tiwary, Chandra; Ajayan, Pulickel},
year = {2019},
date = {2019-01-05},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Thakur P.; Woellner Yadav, Cristiano F. ; Sinha
Liquid Exfoliation of Icosahedral Quasicrystals Journal Article
In: Advanced Functional Materials, vol. 2018, pp. 1801181, 2018.
@article{Yadav2018b,
title = {Liquid Exfoliation of Icosahedral Quasicrystals},
author = {Yadav, Thakur P.; Woellner, Cristiano F.; Sinha, Shyam K.; Sharifi, Tiva; Apte, Amey; Mukhopadhyay, Nilay K.; Srivastava, Onkar N.; Vajtai, Robert; Galvao, Douglas S.; Tiwary, Chandra S.; Ajayan, Pulickel M.},
url = {https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201801181?campaign=wolearlyview},
doi = {DOI: 10.1002/adfm.201801181},
year = {2018},
date = {2018-04-24},
journal = {Advanced Functional Materials},
volume = {2018},
pages = {1801181},
abstract = {The realization of quasicrystals has attracted a considerable attention due to their unusual structures and properties. The concept of quasicrystals in the atomically thin materials is even more appealing due to the in-plane cova-lent bonds and weak interlayer interactions. Here, it is demonstrated that 2D quasicrystals can be created/isolated from bulk phases because of long-range interlayer ordered aperiodic arrangements. An ultrasonication-assisted exfolia-tion of polygrained icosahedral Al–Pd–Mn quasicrystals at room temperature shows the formation of a large area of mono- and few layers in threefold qua-sicrystalline plane. The formation of these layers from random grain orientation consistently indicates that the threefold plane is most stable in comparison to the twofold and fivefold planes in icosahedral clusters. The above experimental observations are further supported with help of theoretical simulations. The mono- and few-layered aperiodic planes render plentiful active sites for the catalysis of hydrogen evolution reaction. The threefold 2D quasicrystalline plane exhibits a hydrogen evolution reaction overpotential of ≈100 mV (160 times less than bulk counterpart) and long-term durability. These systems constitute the first demonstration of quasicrystalline monolayer ordering in a free-standing thin layer without requiring the support of periodic or aperiodic substrate.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Devi, M. Manolata; Dolai, N.; S, S. Sreehala; Jaques, Y. M.; Galvao, Douglas S.; C.S.Tiwary,; Sharma, Sudhanshu; Biswas, Krishanu
Morphology Controlled Graphene-Alloy Nanoparticles Hybrids with Tunable Catalytic Activity Journal Article
In: Nanoscale, vol. 10, pp. 8840-8850, 2018.
@article{Devi2018b,
title = {Morphology Controlled Graphene-Alloy Nanoparticles Hybrids with Tunable Catalytic Activity},
author = {M. Manolata Devi and N. Dolai and S. Sreehala S and Y. M. Jaques and Douglas S. Galvao and C.S.Tiwary and Sudhanshu Sharma and Krishanu Biswas},
url = {pubs.rsc.org/en/content/articlehtml/2018/nr/c7nr09688g},
doi = {10.1039/C7NR09688G},
year = {2018},
date = {2018-04-07},
journal = {Nanoscale},
volume = {10},
pages = {8840-8850},
abstract = {Selective oxidation of CO to CO2 using metallic or alloy nanoparticles as catalysts can solve two major problems of energy requirements and environmental pollution. Achieving 100% conversion efficiency at a lower temperature is a very important goal. This requires sustained efforts to design and develop novel supported catalysts containing alloy nanoparticles. In this regard, the decoration of nanoalloys with graphene, as a support for the catalyst, can provide a novel structure due to the synergic effect of the nanoalloys and graphene. Here, we demonstrate the effect of nano-PdPt (Palladium–Platinum) alloys having different morphologies on the catalytic efficiency for the selective oxidation of CO. Efforts were made to prepare different morphologies of PdPt alloy nanoparticles with the advantage of tuning the capping agent (PVP – polyvinyl pyrollidone) and decorating them on graphene sheets via the wet-chemical route. The catalytic activity of the G-PdPt hybrids with an urchin-like morphology has been found to be superior (higher % conversion at 135 °C lower) to that with a nanoflower morphology. The above experimental observations are further supported by molecular dynamics (MD) simulations.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Sandhya; Manimunda Susarla, Praveena; Morais Jaques
Deformation Mechanisms of Vertically Stacked WS2 /MoS2 Heterostructures: The Role of Interfaces Journal Article
In: ACS Nano, vol. 12, no. 4, pp. 4036−4044, 2018.
@article{Susarla2018,
title = {Deformation Mechanisms of Vertically Stacked WS2 /MoS2 Heterostructures: The Role of Interfaces},
author = {Susarla, Sandhya; Manimunda, Praveena; Morais Jaques, Ygor; Hachtel, Jordan; Idrobo, Juan Carlos; Syed Amanulla, Syed Asif; Galvao, Douglas; Tiwary, Chandra; Ajayan, Pulickel},
url = {https://pubs.acs.org/doi/10.1021/acsnano.8b01786},
doi = {DOI: 10.1021/acsnano.8b01786},
year = {2018},
date = {2018-04-05},
journal = {ACS Nano},
volume = {12},
number = {4},
pages = {4036−4044},
abstract = {The mechanical and optical properties generated due to the stacking of different atomically thin materials
have made it possible to tune and engineer these materials for next-generation electronics. The understanding of the
interlayer interactions in such stacked structures is of fundamental interest for structure and property correlation. Here, a
combined approach of in situ Raman spectroscopy and mechanical straining along with molecular dynamics (MD)
simulations has been used to probe one such interface, namely, the WS2/MoS2 heterostructure. Vertical heterostructures on
poly(methyl methacrylate), when flexed, showed signs of decoupling at 1.2% strain. Theoretical calculations showed straininduced
stacking changes at 1.75% strain. The sliding characteristics of layers were also investigated using scanning probe
microscopy based nanoscratch testing, and the results are further supported by MD simulations. The present study could
be used to design future optoelectronic devices based on WS2/MoS2 heterostructures.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
have made it possible to tune and engineer these materials for next-generation electronics. The understanding of the
interlayer interactions in such stacked structures is of fundamental interest for structure and property correlation. Here, a
combined approach of in situ Raman spectroscopy and mechanical straining along with molecular dynamics (MD)
simulations has been used to probe one such interface, namely, the WS2/MoS2 heterostructure. Vertical heterostructures on
poly(methyl methacrylate), when flexed, showed signs of decoupling at 1.2% strain. Theoretical calculations showed straininduced
stacking changes at 1.75% strain. The sliding characteristics of layers were also investigated using scanning probe
microscopy based nanoscratch testing, and the results are further supported by MD simulations. The present study could
be used to design future optoelectronic devices based on WS2/MoS2 heterostructures.
Jaques, Y. M.; Manimunda, P.; Nakanishi, Y.; Susarla, S.; Woellner, C. F.; Bhowmick, S.; Asif, S. A. S.; Galvao, D. S.; Tiwary, C. S.; Ajayan, P. M.
Differences in the Mechanical Properties of Monolayer and Multilayer WSe2/MoSe2 Journal Article
In: MRS Advances, vol. 3, no. 6-7, pp. 373-378, 2018.
@article{Jaques2018,
title = {Differences in the Mechanical Properties of Monolayer and Multilayer WSe2/MoSe2},
author = {Y. M. Jaques and P. Manimunda and Y. Nakanishi and S. Susarla and C. F. Woellner and S. Bhowmick and S. A. S. Asif and D. S. Galvao and C. S. Tiwary and P. M. Ajayan},
url = {https://www.cambridge.org/core/journals/mrs-advances/article/differences-in-the-mechanical-properties-of-monolayer-and-multilayer-wse2mose2/4F6AFF52BCE7DFFF87E35AC424A8F0BE},
doi = { https://doi.org/10.1557/adv.2018.246},
year = {2018},
date = {2018-03-01},
journal = {MRS Advances},
volume = {3},
number = {6-7},
pages = {373-378},
abstract = {Transition metal dichalcogenides are 2D structures with remarkable electronic, chemical, optical and mechanical properties. Monolayer and crystal properties of these structures have been extensively investigated, but a detailed understanding of the properties of their few-layer structures are still missing. In this work we investigated the mechanical differences between monolayer and multilayer WSe2 and MoSe2, through fully atomistic molecular dynamics simulations (MD). It was observed that single layer WSe2/MoSe2 deposited on silicon substrates have larger friction coefficients than 2, 3 and 4 layered structures. For all considered cases it is always easier to peel off and/or to fracture MoSe2 structures. These results suggest that the interactions between first layer and substrate are stronger than interlayer interactions themselves. Similar findings have been reported for other nanomaterials and it has been speculated whether this is a universal-like behavior for 2D layered materials. We have also analyzed fracture patterns. Our results show that fracture is chirality dependent with crack propagation preferentially perpendicular to W(Mo)-Se bonds and faster for zig-zag-like defects.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Shadmi, Nitzan; Kremen, Anna; Frenkel, Yiftach; Lapin, Zachary J.; Machado, Leonardo D.; Legoas, Sergio B.; Bitton, Ora; Rechav, Katya; Popovitz-Biro, Ronit; Galvão, Douglas S.; Jorio, Ado; Novotny, Lukas; Kalisky, Beena; Joselevich, Ernesto
Defect-Free Carbon Nanotube Coils Online
2018, (reprint Nano Letters v16, 2152 (2016)).
@online{Shadmi2018,
title = {Defect-Free Carbon Nanotube Coils },
author = {Nitzan Shadmi and Anna Kremen and Yiftach Frenkel and Zachary J. Lapin and Leonardo D. Machado and Sergio B. Legoas and Ora Bitton and Katya Rechav and Ronit Popovitz-Biro and Douglas S. Galvão and Ado Jorio and Lukas Novotny and Beena Kalisky and Ernesto Joselevich},
url = {https://arxiv.org/abs/1802.03715},
year = {2018},
date = {2018-02-13},
abstract = {Carbon nanotubes are promising building blocks for various nanoelectronic components. A
highly desirable geometry for such applications is a coil. However, coiled nanotube structures
reported so far were inherently defective or had no free ends accessible for contacting. Here we
demonstrate the spontaneous self-coiling of single-wall carbon nanotubes into defect-free coils
of up to more than 70 turns with identical diameter and chirality, and free ends. We characterize
the structure, formation mechanism and electrical properties of these coils by different
microscopies, molecular dynamics simulations, Raman spectroscopy, and electrical and magnetic
measurements. The coils are highly conductive, as expected for defect-free carbon nanotubes,
but adjacent nanotube segments in the coil are more highly coupled than in regular bundles of
single-wall carbon nanotubes, owing to their perfect crystal momentum matching, which enables
tunneling between the turns. Although this behavior does not yet enable the performance of these
nanotube coils as inductive devices, it does point a clear path for their realization. Hence, this
study represents a major step toward the production of many different nanotube coil devices,
including inductors, electromagnets, transformers and dynamos.},
note = {reprint Nano Letters v16, 2152 (2016)},
keywords = {},
pubstate = {published},
tppubtype = {online}
}
highly desirable geometry for such applications is a coil. However, coiled nanotube structures
reported so far were inherently defective or had no free ends accessible for contacting. Here we
demonstrate the spontaneous self-coiling of single-wall carbon nanotubes into defect-free coils
of up to more than 70 turns with identical diameter and chirality, and free ends. We characterize
the structure, formation mechanism and electrical properties of these coils by different
microscopies, molecular dynamics simulations, Raman spectroscopy, and electrical and magnetic
measurements. The coils are highly conductive, as expected for defect-free carbon nanotubes,
but adjacent nanotube segments in the coil are more highly coupled than in regular bundles of
single-wall carbon nanotubes, owing to their perfect crystal momentum matching, which enables
tunneling between the turns. Although this behavior does not yet enable the performance of these
nanotube coils as inductive devices, it does point a clear path for their realization. Hence, this
study represents a major step toward the production of many different nanotube coil devices,
including inductors, electromagnets, transformers and dynamos.
Jaques, Y. M.; Manimunda, P.; Nakanishi, Y.; Susarla, S.; Woellner, C. F.; Bhowmick, S.; Asif, S. A. S.; Galvao, D. S.; C. S. Tiwary,; Ajayan, P. M.
Differences in the Mechanical Properties of Monolayer and Multilayer WSe2/MoSe2 Online
2018, (preprint arXiv:1801.05641).
@online{Jaques2018b,
title = {Differences in the Mechanical Properties of Monolayer and Multilayer WSe2/MoSe2},
author = {Y. M. Jaques and P. Manimunda and Y. Nakanishi and S. Susarla and C. F. Woellner and S. Bhowmick and S. A. S. Asif and D. S. Galvao and C. S. Tiwary, and P. M. Ajayan},
url = {https://arxiv.org/abs/1801.05641},
year = {2018},
date = {2018-01-18},
abstract = {Transition metal dichalcogenides are 2D structures with remarkable electronic, chemical, optical and mechanical properties. Monolayer and crystal properties of these structures have been extensively investigated, but a detailed understanding of the properties of their few-layer structures are still missing. In this work we investigated the mechanical differences between monolayer and multilayer WSe2 and MoSe2, through fully atomistic molecular dynamics simulations (MD). It was observed that single layer WSe2/MoSe2 deposited on silicon substrates have larger friction coefficients than 2, 3 and 4 layered structures. For all considered cases it is always easier to peel off and/or to fracture MoSe2 structures. These results suggest that the interactions between first layer and substrate are stronger than interlayer interactions themselves. Similar findings have been reported for other nanomaterials and it has been speculated whether this is a universal-like behavior for 2D layered materials. We have also analyzed fracture patterns. Our results show that fracture is chirality dependent with crack propagation preferentially perpendicular to W(Mo)-Se bonds and faster for zig-zag-like defects.},
note = {preprint arXiv:1801.05641},
keywords = {},
pubstate = {published},
tppubtype = {online}
}
Parambath M Sudeep Sruthi Radhakrishnan, Jun Hyoung Park; Ajayan, Pulickel M
Multifunctional Hybrids Based on 2D Fluorinated Graphene Oxide and Superparamagnetic Iron Oxide Nanoparticles Journal Article
In: Particle & Particle Systems Characterization, vol. 34, no. 11, pp. 1700245, 2017.
@article{Radhakrishnan2017,
title = {Multifunctional Hybrids Based on 2D Fluorinated Graphene Oxide and Superparamagnetic Iron Oxide Nanoparticles},
author = {Sruthi Radhakrishnan, Parambath M Sudeep, Jun Hyoung Park, Cristiano F Woellner, Kierstein Maladonado, Douglas S Galvao, Benny Abraham Kaipparettu, Chandra Sekhar Tiwary, and Pulickel M Ajayan},
url = {http://onlinelibrary.wiley.com/doi/10.1002/ppsc.201700245/full},
doi = {DOI: 10.1002/ppsc.201700245},
year = {2017},
date = {2017-11-01},
journal = {Particle & Particle Systems Characterization},
volume = {34},
number = {11},
pages = {1700245},
abstract = {Carbon-based nanomaterials have garnered a lot of attention in the research of yesteryear. Here this study reports a composite based on fluorinated graphene oxide—a multifunctional subsidiary of graphene; and iron oxide nanoparticles as a contrast agent for magnetic resonance imaging (MRI). Extensive structural and functional characterization is carried out to understand composite behavior toward biotoxicity and its performance as a contrast agent. The electron withdrawing fluorine group decreases the charge transfer to iron oxide increasing the magnetic saturation of the composite thus enhancing the contrast. The interaction of paramagnetic and superparamagnetic systems yields a superior contrast agent for MRI and fluorescent imaging.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
P. M. Gautam, Chandkiram; Tiwary, Chandra Sekhar; Machado, Leonardo D.; Jose, Sujin; Ozden, Sehmus; Biradar, Santoshkumar; Galvao, Douglas S.; Sonker, Rakesh K.; Yadav, B. C.; Vajtai, Robert; Ajayan,
Synthesis and porous h-BN 3D architectures for effective humidity and gas sensors Authors Journal Article
In: RSC Advances, vol. 6, no. 91, pp. 87888-87896, 2016.
@article{Gautam2016,
title = {Synthesis and porous h-BN 3D architectures for effective humidity and gas sensors Authors},
author = {P. M. Gautam, Chandkiram and Tiwary, Chandra Sekhar and Machado, Leonardo D. and Jose, Sujin and Ozden, Sehmus and Biradar, Santoshkumar and Galvao, Douglas S. and Sonker, Rakesh K. and Yadav, B. C. and Vajtai, Robert and Ajayan},
url = {pubs.rsc.org/en/Content/ArticleHtml/2016/RA/c6ra18833h},
doi = {10.1039/C6RA18833H},
year = {2016},
date = {2016-09-09},
journal = {RSC Advances},
volume = {6},
number = {91},
pages = {87888-87896},
abstract = {3D (three dimensional) architectures synthesised using an easily scalable solid state method which results in an interconnected network of porous h-BN sheets with boron trioxide are reported in this study. The boron trioxide acts as a nucleating agent for the formation of laterally large nanosheets of h-BN with a low density and increases the specific surface area. The stable form shows improved mechanical properties (experimentally and using MD simulation) and serves as a suitable material for humidity and liquefied petroleum gas (LPG) sensor applications. The sensor shows stability for up to several months without losing its sensitivity.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Shaoli Fang Jiangtao Di, Francisco A Moura
Strong, Twist‐Stable Carbon Nanotube Yarns and Muscles by Tension Annealing at Extreme Temperatures Journal Article
In: Advanced Materials, vol. 28, no. 31, pp. 6598-6605, 2016.
@article{Di2016,
title = {Strong, Twist‐Stable Carbon Nanotube Yarns and Muscles by Tension Annealing at Extreme Temperatures},
author = {Jiangtao Di, Shaoli Fang, Francisco A Moura, Douglas S Galvão, Julia Bykova, Ali Aliev, Mônica Jung de Andrade, Xavier Lepró, Na Li, Carter Haines, Raquel Ovalle‐Robles, Dong Qian, Ray H Baughman},
url = {onlinelibrary.wiley.com/doi/10.1002/adma.201600628/full},
doi = {10.1002/adma.201600628},
year = {2016},
date = {2016-08-01},
journal = {Advanced Materials},
volume = {28},
number = {31},
pages = {6598-6605},
abstract = {A high-speed incandescent tension annealing process (ITAP) is used to increase the modulus and strength of twist-spun carbon nanotube yarns by up to 12-fold and 2.6-fold, respectively, provide remarkable resistance to oxidation and powerful protonating acids, and freeze yarn untwist. This twist stability enables torsional artificial-muscle motors having improved performance and minimizes problematic untwist during weaving nanotube yarns.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2019

Owuor, Peter Samora; Inthong, Suchittra; Sajadi, Seyed Mohammad; Intawin, Pratthana; Chipara, Alin C.; Woellner, Cristiano F.; Sayed, Farheen N.; Tsang, Harvey H.; Stender, Anthony; Vajtai, Robert; Pengpat, Kamonpan; Eitssayeam, Sukum; Galvao, Douglas S.; Lou, Jun; Tiwary, Chandra Sekhar; Ajayan, Pulickel M.
Elastic and ‘transparent bone’ as an electrochemical separator Journal Article
In: Materials Chemistry Today, vol. 12, pp. 132-138, 2019.
Abstract | Links | BibTeX | Tags: biomaterials, Bone, Characterization, electrodes, Modeling, Molecular Dynamics
@article{Owuor2019,
title = {Elastic and ‘transparent bone’ as an electrochemical separator},
author = {Peter Samora Owuor and Suchittra Inthong and Seyed Mohammad Sajadi and Pratthana Intawin and Alin C. Chipara and Cristiano F. Woellner and Farheen N. Sayed and Harvey H. Tsang and Anthony Stender and Robert Vajtai and Kamonpan Pengpat and Sukum Eitssayeam and Douglas S. Galvao and Jun Lou and Chandra Sekhar Tiwary and Pulickel M. Ajayan},
url = {https://reader.elsevier.com/reader/sd/pii/S246851941830291X?token=B3C1F35B7DCEA8636EFB32B8D1D71EEC9852E58D0729A622DAFDF86C3EE65DF2A33E77CE7534A5D66D3854C396F69D1A},
doi = {10.1016/j.mtchem.2018.12.009},
year = {2019},
date = {2019-01-05},
journal = {Materials Chemistry Today},
volume = {12},
pages = {132-138},
abstract = {Organic matrix of bone mainly composed of collagen matrix serve as a crucial component for remarkable toughness and strength in bones. The porous collagen matrix can also serve as efficient template for various applications such as nanoparticles synthetic, catalysis or catalysis supports, electrochemical separator, filtration membrane and tissue engineering. However, fabricating collagen matrix from bones without degrading its morphological structure still remain a challenge. Here we present evidence of how ceramic crystals from a bone can be removed to fabricate a complete ‘transparent bone’ structure with improved porous and elasticity. We show that demineralization or selective etching using dilute acid (citric) can remove ceramics mineral nanoparticles without degrading the collagen matrix. The transparent bone collagen matrix is investigated as the separator in electrochemical supercapacitor with aqueous electrolyte where it shows better performance compared to conventional separators.},
keywords = {biomaterials, Bone, Characterization, electrodes, Modeling, Molecular Dynamics},
pubstate = {published},
tppubtype = {article}
}
Ok-Kyung; Owuor Park, Peter; Morais Jaques
Novel Method to Fabricate Multi-Functional Boron Nitride-Iron-Carbon Nanotube Hybrid Materials for Fabrication of High- Performance Polyimide Composites (under review) Journal Article
In: 2019.
BibTeX | Tags: Boron Nitride, carbon nanotube, Modeling
@article{Park2019,
title = {Novel Method to Fabricate Multi-Functional Boron Nitride-Iron-Carbon Nanotube Hybrid Materials for Fabrication of High- Performance Polyimide Composites (under review)},
author = {Park, Ok-Kyung; Owuor, Peter; Morais Jaques, Ygor; Lee, Joong Hee; Kim, Nam
Hoon; Galvao, Douglas; Lou, Jun; Tiwary, Chandra; Ajayan, Pulickel},
year = {2019},
date = {2019-01-05},
keywords = {Boron Nitride, carbon nanotube, Modeling},
pubstate = {published},
tppubtype = {article}
}
2018

Thakur P.; Woellner Yadav, Cristiano F. ; Sinha
Liquid Exfoliation of Icosahedral Quasicrystals Journal Article
In: Advanced Functional Materials, vol. 2018, pp. 1801181, 2018.
Abstract | Links | BibTeX | Tags: catalysis, Modeling, quasi-crystals
@article{Yadav2018b,
title = {Liquid Exfoliation of Icosahedral Quasicrystals},
author = {Yadav, Thakur P.; Woellner, Cristiano F.; Sinha, Shyam K.; Sharifi, Tiva; Apte, Amey; Mukhopadhyay, Nilay K.; Srivastava, Onkar N.; Vajtai, Robert; Galvao, Douglas S.; Tiwary, Chandra S.; Ajayan, Pulickel M.},
url = {https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201801181?campaign=wolearlyview},
doi = {DOI: 10.1002/adfm.201801181},
year = {2018},
date = {2018-04-24},
journal = {Advanced Functional Materials},
volume = {2018},
pages = {1801181},
abstract = {The realization of quasicrystals has attracted a considerable attention due to their unusual structures and properties. The concept of quasicrystals in the atomically thin materials is even more appealing due to the in-plane cova-lent bonds and weak interlayer interactions. Here, it is demonstrated that 2D quasicrystals can be created/isolated from bulk phases because of long-range interlayer ordered aperiodic arrangements. An ultrasonication-assisted exfolia-tion of polygrained icosahedral Al–Pd–Mn quasicrystals at room temperature shows the formation of a large area of mono- and few layers in threefold qua-sicrystalline plane. The formation of these layers from random grain orientation consistently indicates that the threefold plane is most stable in comparison to the twofold and fivefold planes in icosahedral clusters. The above experimental observations are further supported with help of theoretical simulations. The mono- and few-layered aperiodic planes render plentiful active sites for the catalysis of hydrogen evolution reaction. The threefold 2D quasicrystalline plane exhibits a hydrogen evolution reaction overpotential of ≈100 mV (160 times less than bulk counterpart) and long-term durability. These systems constitute the first demonstration of quasicrystalline monolayer ordering in a free-standing thin layer without requiring the support of periodic or aperiodic substrate.},
keywords = {catalysis, Modeling, quasi-crystals},
pubstate = {published},
tppubtype = {article}
}

Devi, M. Manolata; Dolai, N.; S, S. Sreehala; Jaques, Y. M.; Galvao, Douglas S.; C.S.Tiwary,; Sharma, Sudhanshu; Biswas, Krishanu
Morphology Controlled Graphene-Alloy Nanoparticles Hybrids with Tunable Catalytic Activity Journal Article
In: Nanoscale, vol. 10, pp. 8840-8850, 2018.
Abstract | Links | BibTeX | Tags: alloys, Graphene, Modeling, Nanoparticles
@article{Devi2018b,
title = {Morphology Controlled Graphene-Alloy Nanoparticles Hybrids with Tunable Catalytic Activity},
author = {M. Manolata Devi and N. Dolai and S. Sreehala S and Y. M. Jaques and Douglas S. Galvao and C.S.Tiwary and Sudhanshu Sharma and Krishanu Biswas},
url = {pubs.rsc.org/en/content/articlehtml/2018/nr/c7nr09688g},
doi = {10.1039/C7NR09688G},
year = {2018},
date = {2018-04-07},
journal = {Nanoscale},
volume = {10},
pages = {8840-8850},
abstract = {Selective oxidation of CO to CO2 using metallic or alloy nanoparticles as catalysts can solve two major problems of energy requirements and environmental pollution. Achieving 100% conversion efficiency at a lower temperature is a very important goal. This requires sustained efforts to design and develop novel supported catalysts containing alloy nanoparticles. In this regard, the decoration of nanoalloys with graphene, as a support for the catalyst, can provide a novel structure due to the synergic effect of the nanoalloys and graphene. Here, we demonstrate the effect of nano-PdPt (Palladium–Platinum) alloys having different morphologies on the catalytic efficiency for the selective oxidation of CO. Efforts were made to prepare different morphologies of PdPt alloy nanoparticles with the advantage of tuning the capping agent (PVP – polyvinyl pyrollidone) and decorating them on graphene sheets via the wet-chemical route. The catalytic activity of the G-PdPt hybrids with an urchin-like morphology has been found to be superior (higher % conversion at 135 °C lower) to that with a nanoflower morphology. The above experimental observations are further supported by molecular dynamics (MD) simulations.},
keywords = {alloys, Graphene, Modeling, Nanoparticles},
pubstate = {published},
tppubtype = {article}
}

Sandhya; Manimunda Susarla, Praveena; Morais Jaques
Deformation Mechanisms of Vertically Stacked WS2 /MoS2 Heterostructures: The Role of Interfaces Journal Article
In: ACS Nano, vol. 12, no. 4, pp. 4036−4044, 2018.
Abstract | Links | BibTeX | Tags: Chalcogenides, Modeling
@article{Susarla2018,
title = {Deformation Mechanisms of Vertically Stacked WS2 /MoS2 Heterostructures: The Role of Interfaces},
author = {Susarla, Sandhya; Manimunda, Praveena; Morais Jaques, Ygor; Hachtel, Jordan; Idrobo, Juan Carlos; Syed Amanulla, Syed Asif; Galvao, Douglas; Tiwary, Chandra; Ajayan, Pulickel},
url = {https://pubs.acs.org/doi/10.1021/acsnano.8b01786},
doi = {DOI: 10.1021/acsnano.8b01786},
year = {2018},
date = {2018-04-05},
journal = {ACS Nano},
volume = {12},
number = {4},
pages = {4036−4044},
abstract = {The mechanical and optical properties generated due to the stacking of different atomically thin materials
have made it possible to tune and engineer these materials for next-generation electronics. The understanding of the
interlayer interactions in such stacked structures is of fundamental interest for structure and property correlation. Here, a
combined approach of in situ Raman spectroscopy and mechanical straining along with molecular dynamics (MD)
simulations has been used to probe one such interface, namely, the WS2/MoS2 heterostructure. Vertical heterostructures on
poly(methyl methacrylate), when flexed, showed signs of decoupling at 1.2% strain. Theoretical calculations showed straininduced
stacking changes at 1.75% strain. The sliding characteristics of layers were also investigated using scanning probe
microscopy based nanoscratch testing, and the results are further supported by MD simulations. The present study could
be used to design future optoelectronic devices based on WS2/MoS2 heterostructures.},
keywords = {Chalcogenides, Modeling},
pubstate = {published},
tppubtype = {article}
}
have made it possible to tune and engineer these materials for next-generation electronics. The understanding of the
interlayer interactions in such stacked structures is of fundamental interest for structure and property correlation. Here, a
combined approach of in situ Raman spectroscopy and mechanical straining along with molecular dynamics (MD)
simulations has been used to probe one such interface, namely, the WS2/MoS2 heterostructure. Vertical heterostructures on
poly(methyl methacrylate), when flexed, showed signs of decoupling at 1.2% strain. Theoretical calculations showed straininduced
stacking changes at 1.75% strain. The sliding characteristics of layers were also investigated using scanning probe
microscopy based nanoscratch testing, and the results are further supported by MD simulations. The present study could
be used to design future optoelectronic devices based on WS2/MoS2 heterostructures.

Jaques, Y. M.; Manimunda, P.; Nakanishi, Y.; Susarla, S.; Woellner, C. F.; Bhowmick, S.; Asif, S. A. S.; Galvao, D. S.; Tiwary, C. S.; Ajayan, P. M.
Differences in the Mechanical Properties of Monolayer and Multilayer WSe2/MoSe2 Journal Article
In: MRS Advances, vol. 3, no. 6-7, pp. 373-378, 2018.
Abstract | Links | BibTeX | Tags: Chalcogenides, Modeling
@article{Jaques2018,
title = {Differences in the Mechanical Properties of Monolayer and Multilayer WSe2/MoSe2},
author = {Y. M. Jaques and P. Manimunda and Y. Nakanishi and S. Susarla and C. F. Woellner and S. Bhowmick and S. A. S. Asif and D. S. Galvao and C. S. Tiwary and P. M. Ajayan},
url = {https://www.cambridge.org/core/journals/mrs-advances/article/differences-in-the-mechanical-properties-of-monolayer-and-multilayer-wse2mose2/4F6AFF52BCE7DFFF87E35AC424A8F0BE},
doi = { https://doi.org/10.1557/adv.2018.246},
year = {2018},
date = {2018-03-01},
journal = {MRS Advances},
volume = {3},
number = {6-7},
pages = {373-378},
abstract = {Transition metal dichalcogenides are 2D structures with remarkable electronic, chemical, optical and mechanical properties. Monolayer and crystal properties of these structures have been extensively investigated, but a detailed understanding of the properties of their few-layer structures are still missing. In this work we investigated the mechanical differences between monolayer and multilayer WSe2 and MoSe2, through fully atomistic molecular dynamics simulations (MD). It was observed that single layer WSe2/MoSe2 deposited on silicon substrates have larger friction coefficients than 2, 3 and 4 layered structures. For all considered cases it is always easier to peel off and/or to fracture MoSe2 structures. These results suggest that the interactions between first layer and substrate are stronger than interlayer interactions themselves. Similar findings have been reported for other nanomaterials and it has been speculated whether this is a universal-like behavior for 2D layered materials. We have also analyzed fracture patterns. Our results show that fracture is chirality dependent with crack propagation preferentially perpendicular to W(Mo)-Se bonds and faster for zig-zag-like defects.},
keywords = {Chalcogenides, Modeling},
pubstate = {published},
tppubtype = {article}
}

Shadmi, Nitzan; Kremen, Anna; Frenkel, Yiftach; Lapin, Zachary J.; Machado, Leonardo D.; Legoas, Sergio B.; Bitton, Ora; Rechav, Katya; Popovitz-Biro, Ronit; Galvão, Douglas S.; Jorio, Ado; Novotny, Lukas; Kalisky, Beena; Joselevich, Ernesto
Defect-Free Carbon Nanotube Coils Online
2018, (reprint Nano Letters v16, 2152 (2016)).
Abstract | Links | BibTeX | Tags: Carbon Nanotubes, Modeling, Nanocoils
@online{Shadmi2018,
title = {Defect-Free Carbon Nanotube Coils },
author = {Nitzan Shadmi and Anna Kremen and Yiftach Frenkel and Zachary J. Lapin and Leonardo D. Machado and Sergio B. Legoas and Ora Bitton and Katya Rechav and Ronit Popovitz-Biro and Douglas S. Galvão and Ado Jorio and Lukas Novotny and Beena Kalisky and Ernesto Joselevich},
url = {https://arxiv.org/abs/1802.03715},
year = {2018},
date = {2018-02-13},
abstract = {Carbon nanotubes are promising building blocks for various nanoelectronic components. A
highly desirable geometry for such applications is a coil. However, coiled nanotube structures
reported so far were inherently defective or had no free ends accessible for contacting. Here we
demonstrate the spontaneous self-coiling of single-wall carbon nanotubes into defect-free coils
of up to more than 70 turns with identical diameter and chirality, and free ends. We characterize
the structure, formation mechanism and electrical properties of these coils by different
microscopies, molecular dynamics simulations, Raman spectroscopy, and electrical and magnetic
measurements. The coils are highly conductive, as expected for defect-free carbon nanotubes,
but adjacent nanotube segments in the coil are more highly coupled than in regular bundles of
single-wall carbon nanotubes, owing to their perfect crystal momentum matching, which enables
tunneling between the turns. Although this behavior does not yet enable the performance of these
nanotube coils as inductive devices, it does point a clear path for their realization. Hence, this
study represents a major step toward the production of many different nanotube coil devices,
including inductors, electromagnets, transformers and dynamos.},
note = {reprint Nano Letters v16, 2152 (2016)},
keywords = {Carbon Nanotubes, Modeling, Nanocoils},
pubstate = {published},
tppubtype = {online}
}
highly desirable geometry for such applications is a coil. However, coiled nanotube structures
reported so far were inherently defective or had no free ends accessible for contacting. Here we
demonstrate the spontaneous self-coiling of single-wall carbon nanotubes into defect-free coils
of up to more than 70 turns with identical diameter and chirality, and free ends. We characterize
the structure, formation mechanism and electrical properties of these coils by different
microscopies, molecular dynamics simulations, Raman spectroscopy, and electrical and magnetic
measurements. The coils are highly conductive, as expected for defect-free carbon nanotubes,
but adjacent nanotube segments in the coil are more highly coupled than in regular bundles of
single-wall carbon nanotubes, owing to their perfect crystal momentum matching, which enables
tunneling between the turns. Although this behavior does not yet enable the performance of these
nanotube coils as inductive devices, it does point a clear path for their realization. Hence, this
study represents a major step toward the production of many different nanotube coil devices,
including inductors, electromagnets, transformers and dynamos.

Jaques, Y. M.; Manimunda, P.; Nakanishi, Y.; Susarla, S.; Woellner, C. F.; Bhowmick, S.; Asif, S. A. S.; Galvao, D. S.; C. S. Tiwary,; Ajayan, P. M.
Differences in the Mechanical Properties of Monolayer and Multilayer WSe2/MoSe2 Online
2018, (preprint arXiv:1801.05641).
Abstract | Links | BibTeX | Tags: Chalcogenides, Mechanical Properties, Modeling
@online{Jaques2018b,
title = {Differences in the Mechanical Properties of Monolayer and Multilayer WSe2/MoSe2},
author = {Y. M. Jaques and P. Manimunda and Y. Nakanishi and S. Susarla and C. F. Woellner and S. Bhowmick and S. A. S. Asif and D. S. Galvao and C. S. Tiwary, and P. M. Ajayan},
url = {https://arxiv.org/abs/1801.05641},
year = {2018},
date = {2018-01-18},
abstract = {Transition metal dichalcogenides are 2D structures with remarkable electronic, chemical, optical and mechanical properties. Monolayer and crystal properties of these structures have been extensively investigated, but a detailed understanding of the properties of their few-layer structures are still missing. In this work we investigated the mechanical differences between monolayer and multilayer WSe2 and MoSe2, through fully atomistic molecular dynamics simulations (MD). It was observed that single layer WSe2/MoSe2 deposited on silicon substrates have larger friction coefficients than 2, 3 and 4 layered structures. For all considered cases it is always easier to peel off and/or to fracture MoSe2 structures. These results suggest that the interactions between first layer and substrate are stronger than interlayer interactions themselves. Similar findings have been reported for other nanomaterials and it has been speculated whether this is a universal-like behavior for 2D layered materials. We have also analyzed fracture patterns. Our results show that fracture is chirality dependent with crack propagation preferentially perpendicular to W(Mo)-Se bonds and faster for zig-zag-like defects.},
note = {preprint arXiv:1801.05641},
keywords = {Chalcogenides, Mechanical Properties, Modeling},
pubstate = {published},
tppubtype = {online}
}
2017

Parambath M Sudeep Sruthi Radhakrishnan, Jun Hyoung Park; Ajayan, Pulickel M
Multifunctional Hybrids Based on 2D Fluorinated Graphene Oxide and Superparamagnetic Iron Oxide Nanoparticles Journal Article
In: Particle & Particle Systems Characterization, vol. 34, no. 11, pp. 1700245, 2017.
Abstract | Links | BibTeX | Tags: Modeling, Nanoparticles
@article{Radhakrishnan2017,
title = {Multifunctional Hybrids Based on 2D Fluorinated Graphene Oxide and Superparamagnetic Iron Oxide Nanoparticles},
author = {Sruthi Radhakrishnan, Parambath M Sudeep, Jun Hyoung Park, Cristiano F Woellner, Kierstein Maladonado, Douglas S Galvao, Benny Abraham Kaipparettu, Chandra Sekhar Tiwary, and Pulickel M Ajayan},
url = {http://onlinelibrary.wiley.com/doi/10.1002/ppsc.201700245/full},
doi = {DOI: 10.1002/ppsc.201700245},
year = {2017},
date = {2017-11-01},
journal = {Particle & Particle Systems Characterization},
volume = {34},
number = {11},
pages = {1700245},
abstract = {Carbon-based nanomaterials have garnered a lot of attention in the research of yesteryear. Here this study reports a composite based on fluorinated graphene oxide—a multifunctional subsidiary of graphene; and iron oxide nanoparticles as a contrast agent for magnetic resonance imaging (MRI). Extensive structural and functional characterization is carried out to understand composite behavior toward biotoxicity and its performance as a contrast agent. The electron withdrawing fluorine group decreases the charge transfer to iron oxide increasing the magnetic saturation of the composite thus enhancing the contrast. The interaction of paramagnetic and superparamagnetic systems yields a superior contrast agent for MRI and fluorescent imaging.},
keywords = {Modeling, Nanoparticles},
pubstate = {published},
tppubtype = {article}
}
2016

P. M. Gautam, Chandkiram; Tiwary, Chandra Sekhar; Machado, Leonardo D.; Jose, Sujin; Ozden, Sehmus; Biradar, Santoshkumar; Galvao, Douglas S.; Sonker, Rakesh K.; Yadav, B. C.; Vajtai, Robert; Ajayan,
Synthesis and porous h-BN 3D architectures for effective humidity and gas sensors Authors Journal Article
In: RSC Advances, vol. 6, no. 91, pp. 87888-87896, 2016.
Abstract | Links | BibTeX | Tags: Boron Nitride tubes, Modeling, Molecular Dynamics, Sensors
@article{Gautam2016,
title = {Synthesis and porous h-BN 3D architectures for effective humidity and gas sensors Authors},
author = {P. M. Gautam, Chandkiram and Tiwary, Chandra Sekhar and Machado, Leonardo D. and Jose, Sujin and Ozden, Sehmus and Biradar, Santoshkumar and Galvao, Douglas S. and Sonker, Rakesh K. and Yadav, B. C. and Vajtai, Robert and Ajayan},
url = {pubs.rsc.org/en/Content/ArticleHtml/2016/RA/c6ra18833h},
doi = {10.1039/C6RA18833H},
year = {2016},
date = {2016-09-09},
journal = {RSC Advances},
volume = {6},
number = {91},
pages = {87888-87896},
abstract = {3D (three dimensional) architectures synthesised using an easily scalable solid state method which results in an interconnected network of porous h-BN sheets with boron trioxide are reported in this study. The boron trioxide acts as a nucleating agent for the formation of laterally large nanosheets of h-BN with a low density and increases the specific surface area. The stable form shows improved mechanical properties (experimentally and using MD simulation) and serves as a suitable material for humidity and liquefied petroleum gas (LPG) sensor applications. The sensor shows stability for up to several months without losing its sensitivity.},
keywords = {Boron Nitride tubes, Modeling, Molecular Dynamics, Sensors},
pubstate = {published},
tppubtype = {article}
}

Shaoli Fang Jiangtao Di, Francisco A Moura
Strong, Twist‐Stable Carbon Nanotube Yarns and Muscles by Tension Annealing at Extreme Temperatures Journal Article
In: Advanced Materials, vol. 28, no. 31, pp. 6598-6605, 2016.
Abstract | Links | BibTeX | Tags: Artificial Muscles, Carbon Nanotubes, Modeling
@article{Di2016,
title = {Strong, Twist‐Stable Carbon Nanotube Yarns and Muscles by Tension Annealing at Extreme Temperatures},
author = {Jiangtao Di, Shaoli Fang, Francisco A Moura, Douglas S Galvão, Julia Bykova, Ali Aliev, Mônica Jung de Andrade, Xavier Lepró, Na Li, Carter Haines, Raquel Ovalle‐Robles, Dong Qian, Ray H Baughman},
url = {onlinelibrary.wiley.com/doi/10.1002/adma.201600628/full},
doi = {10.1002/adma.201600628},
year = {2016},
date = {2016-08-01},
journal = {Advanced Materials},
volume = {28},
number = {31},
pages = {6598-6605},
abstract = {A high-speed incandescent tension annealing process (ITAP) is used to increase the modulus and strength of twist-spun carbon nanotube yarns by up to 12-fold and 2.6-fold, respectively, provide remarkable resistance to oxidation and powerful protonating acids, and freeze yarn untwist. This twist stability enables torsional artificial-muscle motors having improved performance and minimizes problematic untwist during weaving nanotube yarns.},
keywords = {Artificial Muscles, Carbon Nanotubes, Modeling},
pubstate = {published},
tppubtype = {article}
}
http://scholar.google.com/citations?hl=en&user=95SvbM8AAAAJ